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ABSTRACT

A general purpose unstructured mesh solver for steady-state two-dimensional inviscid and

viscous flows is described. The efficiency and accuracy of the method are enhanced by the

simultaneous use of adaptive meshing and an unstructured multigrid technique. A method for

generating highly stretched triangulations in regions of viscous flow is outlined, and a pro-

cedure for implementing an algebraic turbulence model on unstructured meshes is described.
Results are shown for external and internal inviscid flows and for turbulent viscous flow over a

multi-element airfoil configuration.
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1. INTRODUCTION

Numerical methods for the computation of steady-state compressible flows have pro-

gressed to the point where the major obstacle to achieving an efficient and accurate flow solu-

tion for a given problem lies in one's ability to generate an adequate mesh over the given

geometry. For complex configurations, the most often employed approach consists of partition-

ing the domain into a number of topologically simple regions and generating a structured mesh

in each of these regions. The construction of these so-called block-structured meshes has pro-

ven to be an expensive and time consuming process, requiring much human intervention.

An alternate approach is afforded by the use of unstructured meshes using triangular ele-

ments in two dimensions, and tetrahedral elements in three dimensions. Compared with struc-

tured meshes, in which grid lines must propagate across the entire domain, unstructured meshes

are purely local constructions, and thus provide a much greater degree of flexibility in meshing

complex geometries. Furthermore, they provide a natural setting for the use of adaptive mesh-

ing techniques, where new mesh points are added and the grid is restructured locally in regions

where the flow gradients are large.

However, even in the case of inviscid flows, the use of unstructured meshes has often

been impeded by sometimes questionable accuracy and inefficient solvers. The efficiency of

these solvers is hindered by the use of indirect addressing required by the random data sets,

and by the use of relatively simple solution algorithms, due to the difficulties associated in con-

structing implicit solvers on unstructured meshes, which require the inversion of large sparse

matrices. While inefficiencies due to random data sets, which generally result in a reduction by

a factor of three of the number of floating point operations per second (Mflop rate) achievable

on present-day supercomputers, cannot be avoided, efficient solution algorithms requiring near

optimal computational complexity may be devised. In the present work, this has been achieved

through the use of a multigrid strategy [1]. Provided a consistent discretization of the govern-

ing equations is employed, unstructured meshes can be shown to provide extremely accurate

solutions through extensive use of adaptive meshing [2,3,4,5].

For viscous flows, unstructured meshes have seldom been employed, or in certain cases,

have been used only in the inviscid regions of the flow, as part of a hybrid approach where

structured meshes are employed in the regions of viscous flow [6,7]. The strong directionality

of the gradients in the viscous flow regions, and the requirements they impose on the mesh

generation procedure, as well as the frequent use of algebraic turbulence models, appears to

have provided a strong deterrent against the use of fully unstructured meshes for viscous flows.

In this paper, the development of an unstructured mesh solver for both inviscid and

viscous steady-state flows about arbitrary two-dimensional geometries is described. This work

represents an effort at constructing a general purpose, accurate, and efficient solution method.

To this end, a general method for setting up the geometrical configuration (spline curves) and

application of boundary conditions has been devised. An unstructured multigrid algorithm is

used in conjunction with an adaptive meshing technique to ensure accurate and efficient solu-

tions. For viscous flow calculations, a procedure for generating and adaptively refining highly

stretched triangulations is presented. The implementation of an algebraic turbulence model for

use on unstructured meshes is also described.
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2. PROBLEM DEFINITION

The fu-st step involves the definition of the problem to be solved, which relates to the

definition of the geometry, and the specification of boundary conditions and initial conditions.

Geometry definition is the first step, which must necessarily be performed prior to the

mesh generation and flow solution phases. In general, the geometrical configuration is

described by an ordered series of points. These points are not employed as mesh points them-

selves. A spline curve which fits these points is constructed, and mesh points are taken at

predetermined locations along this spline curve. Thus, the geometrical configuration is in fact

defined by a series of spline curves. This is especially important when adaptive meshing tech-

niques are considered. New points which are introduced on the boundary must conform to the

spline definition of this boundary, rather than simply being positioned midway between two

neighboring grid points. Hence the geometry definition stage consists of identifying ordered

groups of geometry points which are to be splined, selecting a type of spline for each group,

and generating the spline curve for each group, which is stored as a series of spline coordinates

and coefficients, for later use in the mesh generation and flow solution phases.

The specification of boundary conditions forms part of the problem definition stage and

as such, is best treated prior to the mesh generation and flow solution phases. The original

edges which define the geometry (such edges link two geometry definition points prior to the

spline fitting operation) are sorted into groups, each of which corresponds to a particular type

of boundary condition. This information is then stored for subsequent use in the mesh genera-

tion and flow solution phase. When the initial mesh is generated, boundary points are assigned

the boundary condition corresponding to that of the geometry definition edge from which they

were generated. When adaptively adding points to an existing mesh, new boundary points may

also be assigned a boundary condition type in this manner. In the flow solution phase, applica-

tion of the boundary conditions consists of looping through all boundary points and applying

the appropriate boundary conditions at each point, as dictated by the boundary condition type

associated with each point. To efficiently vectorize this step, boundary points are sorted into

groups, each group representing a specific type of boundary condition, and the appropriate

boundary condition is then executed on each group in a vector fashion. This predetermination

and storage of boundary condition types allows for a completely general flow solution algo-

rithm and facilitates the adaptive insertion of new boundary points without upsetting the logic

of the solver. Finally the specification of initial conditions, such as Mach number, Reynolds

number, and angle of incidence, may be effected without loss of generality as an input list in

the flow solution phase.

In this work, internal as well as external flow geometries have been considered. For

external flow about multi-element airfoil configurations, each airfoil element is defined by a

cubic spline. The circular far-field boundary is "splined" as a linear fit between a set of

defining points. Tangential flow, or zero velocity boundary conditions are applied at the airfoil

surfaces, depending on whether the Euler or Navier-Stokes equations are being solved. In the

far field, a non-reflecting locally one-dimensional characteristic boundary condition is employed

[8].

The internal flow about periodic cascade geometries requires the simultaneous use of two

types of splines and three types of boundary conditions, thus providing a good illustration of

the generality of this process. The initial definition of the geometry for this case, which is dep-

icted in Figure 1, is composed of eight boundary regions. Regions 1 and 5 represent the

inflow and outflow planes, regions 2,4 and 6,8 represent the periodic line. These regions are
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thusall "splined"asstraightlinesegments.Regions3 and7 representtheloweranduppersur-
faceof theturbinebladerespectively,andaredefinedby cubicsplines.In orderto maintain
continuityof slopeandcurvatureat theleadingandtrailingedgepoints(i.e.theperiodicpoints
of theblade),in additionto the lowersurfacepoints,a periodic representationof theupper
surfacepointsis constructedandusedin conjunctionwith thesepointsto definethe spline
alongthelowersurfaceof theblade.A similartreatmentis employedfor theuppersurfacein
boundaryregion7. In regions1 and 2, inlet andoutlet boundaryconditionsarespecified
respectively.For the inletflow, totalpressure,totalenthalpy,andtheflow anglearespecified,
while theremainingconditionis obtainedby extrapolatingthelocallyone-dimensionaloutgo-
ing Riemanninvariantnormal to the boundary from the interior. For the outflow boundary,

back pressure is specified, and total pressure, total enthalpy plus the outgoing locally one-
dimensional Riemann invariant normal to the boundary are extrapolated from the interior

[9,10]. In regions 3 and 7, flow tangency or zero velocity conditions are imposed, depending
on whether inviscid or viscous flow solutions are sought. In regions 2, 4, 6, and 8, periodic

boundary conditions are applied. A natural way of implementing periodic boundary conditions

in the context of unstructured meshes is through the use of pointers. Each periodic boundary

point is associated with its duplicate point on the corresponding periodic boundary through an

integer pointer, which points to the address of the appropriate point. Thus, logically, the two

corresponding periodic points refer to the same point, and are thus updated simultaneously and

identically. However, duplicate physical copies of this point are required, each with a different

physical coordinate, and each referring to a point on one of the two periodic cuts.

3. MESH GENERATION

3.1. Initial Mesh Generation

The initial unstructured mesh is generated in three essentially independent stages. In the

first stage, a distribution of mesh points filling the domain is generated. These points are then

joined together to form a set of non-overlapping triangles using a Delaunay triangulation algo-

rithm. Finally, a post-processing operation is employed to smooth out the mesh by slightly

repositioning the points according to an elliptic smoothing operator [11].

While adaptive meshing techniques can be relied upon to increase the mesh resolution in

regions of high flow gradients, a good initial mesh point distribution is essential to ensure the

capture of all salient flow features on the initial mesh, and to reduce the number of adaptivity

cycles required to attain a given accuracy level. This is particularly true in the case of high

Reynolds number viscous flows, where very small normal spacings are required in the viscous

regions. Since much effort has been expended in devising structured mesh generation strategies

for specific types of geometries, these provide a natural starting point for the generation of a

mesh point distribution. Each component of the geometry may be fitted locally with a struc-

tured mesh, suitable to that particular type of component, and the union of all the points from

these overlapping local meshes, which lie in the flow field, used as the basis for the triangula-
tion. For multi-element airfoils, an O-mesh is fitted around each airfoil element using a hyper-

bolic mesh generation algorithm [12]. For internal flow cascade geometries, the initial mesh

point distribution is derived from a structured H-mesh [10].

Delaunay triangulation represents a unique way of joining a set of points in a plane

together to form a set of non-overlapping triangles. Bowyer's algorithm [13,14] is used to con-

struct the triangulation. Assuming an initial triangulation exists (this may be constructed by
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joining a small number of boundary points together), the mesh points are introduced and tri-

angulated one at a time into the existing triangulation. Bowyer's algorithm makes use of the

circumcircle property of a Delaunay construction, which states that the eircumcircles of the tri-

angles may not contain vertices from other triangles. Thus, each time a new mesh point is

introduced, the union of all triangles whose circumcircles contain this new point is identified.

The existing mesh structure is removed in this region and new triangles are formed by joining

the new point to all the vertices of the restructured region. When all mesh points have been

introduced and triangulated, the initial unstructured mesh is obtained.

3.2. Adaptive Mesh Generation

This sequential insertion and local restructuring of new mesh points is ideally suited for

an adaptive meshing strategy. Once a solution has been obtained on the initial mesh, new

mesh points are created midway along mesh edges in regions of large flow gradients. Each

new mesh point is then triangulated into the existing mesh using Bowyer's algorithm. The

search for the triangles whose circumcircles are intersected by the new point can be made

extremely efficient by beginning with the two triangles on either side of the edge within which

the new point was generated, and then searching through neighboring triangles. Hence, adap-

tive mesh enrichment may be accomplished using only local searching and restructuring, thus

avoiding the need for global mesh regeneration. When new boundary points are created, they

must be positioned on the spline curve which defines that boundary. For concave boundaries,

this results in mesh points which are not enclosed by any of the existing mesh triangles, as

shown in Figure 2. To avoid failure of the intersected circumcirde search routine, new boun-

dary points are initially positioned midway along the boundary edge within which they are

generated. The circumcircle search and local retriangulation are then effected. The new mesh

point is then displaced onto the spline curve, thus forming a sliver triangle which joins the new

point with the two ends of the generating mesh edge. Such sliver triangles, which lead to a

crossing of grid lines for concave boundaries (c.f. Figure 2), and for convex boundaries

represent elements exterior to the computational domain, must be identified and subsequently
removed.

4. FLOW SOLUTION

In conservative form, the full Navier-Stokes equations read

0--7+-if+ o-7= Re----S- 0y3 (1)

where w is the solution vector and fc and gc are the cartesian components of the convective
fluxes

W _ °1pu pu2 + p

pv f" = / puv
pE [ puE+up

p_ +p

pvE+vp

(2)

In the above equations, p represents the fluid density, u and v the x and y components of fluid

velocity, E the total energy, and p is the pressure which can be calculated from the equation of

state of a perfect gas

e (3)p = ('y-1)p - 2
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Theviscousfluxes f, and gv are given by

[0fv = O'_

Ut_xx+Vl3x_--qx

gv _

0
u%x+v%:qy

(4)

where o represents the stress tensor, and q the heat flux vector, which are given by the consti-

tutive equations for a Newtonian fluid

2

2

cr,_= %_= _t(u,+vx) (5)

_P
q_= -kP-f-r= _.._L.&....L

_x ?--IPr _x

_P

= __T _.._L._F__.P_..
q' -"_Y = T'-I er _y

3' is the ratio of specific heats of the fluid, M, the freestream Mach number, Re.. the Reynolds

number based on the airfoil chord, and Pr the Prandtl number. The coefficient of viscosity Ix

varies with the temperature of the fluid, and is calculated as

IX = K T 0"72 (6)

where K is a constant. Equation (1) represents a set of partial differential equations which

must be discretized in space in order to obtain a set of coupled ordinary differential equations,

which can then be integrated in time to obtain the steady-state solution.

The spatial discretization procedure begins by storing flow variables at the vertices of the

triangles. The stress tensor o and the heat flux vector q must be calculated at the centers of the

triangles. This is achieved by computing the required first differences in the flow variables

(from equations (5)) at the triangle centers. For a piecewise linear approximation of the flow

variables in space, the first differences are constant over each triangle, and may be computed
as

Iff 1 ± +
w_ = _'JJ"_"x dxdy = -_]w dy = A _ 2 (Y_., - YD (7)

fr w ±
wy = -_-jj _y dxdy = -_]w dx = a _tt 2 (xt+l - xk) (8)

where the summation over k refers to the three vertices of the u'iangle. The flux balance equa-

tions are obtained by a Galerkin finite-element type formulation. The Navier-Stokes equations
are first rewritten in vector notation

_--_-+ V.Fc- Re, V.F, (9)

where the bold typesetdenotes vectorquantities.F_ is a dyadic (secondorder tensor),the
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cartesian components of which are given by the fc and & convective flux vectors defined previ-

ously, and a similar notation is employed for the viscous flux terms. Multiplying by a test

function 00, and integrating over physical space yields

4_M..

Integrating the flux integrals by parts, and neglecting boundary terms gives

"_S_41w dxdy = J'_F: .V41dxdy #yM.,Re._F, .V¢ dxdy (1 1)

In order to evaluate the flux balance equations at a vertex P, ¢ is taken as a piecewise linear

function which has the value 1 at node P, and vanishes at all other vertices. Therefore, the

integrals in the above equation are non-zero only over triangles which contain the vertex P,

thus defining the domain of influence of node P, as shown in Figure 3. To evaluate the above

integrals, we make use of the fact that ex and ey are constant over a triangle, and may be

evaluated as per equations (7) and (8). The convective fluxes Fc are taken as piecewise linear

functions in space, and the viscous fluxes F, are piecewise constant over each triangle, since

they are formed from first derivatives in the flow variables. Evaluating the flux integrals with

these assumptions, one obtains

T.AL_ (12)•,.,=l 6 .AL_ Re. J=-I

where the summations are over all triangles in the domain of influence, as shown in Figure 3.

A_ represents the directed (normal) edge length of the face of each triangle on the outer boun-

dary of the domain, l_, F_ are the convective fluxes at the two vertices at either end of this

edge, and F'_ is the viscous flux in triangle e, e being a triangle in the domain of influence of ¢_.

If the integral on the left hand side of equation (12) is evaluated in the same manner, the time

derivatives become coupled in space. Since we are not interested in the time-accuracy of the

scheme, but only in the final steady-state solution, we employ the concept of a lumped mass

matrix. This is equivalent to assuming w to be constant over the domain of influence while

integrating the left hand side. Hence, we obtain

t3w_, 1_ + F_ _M., 3 (_ .AL_) (13)
_=1 Re. e=-I

where the factor of 1/3 is introduced by the integration of ¢ over the domain, and t2_, represents
the surface area of the domain of influence of P. For the convective fluxes, this procedure is

equivalent to the vertex finite-volume formulation described in [1,11]. For a smoothly varying

regular triangulation, the above formulation is second-order accurate.

Additional artificial dissipation terms are required to ensure stability and to capture

shocks without producing numerical oscillations. This is necessary for both inviscid and

viscous flow computations, since in the later case, large regions of the flow field behave essen-

tially inviscidly and the physical viscosity is not sufficient to guarantee numerical stability for

the type of mesh spacings typically employed. Artificial dissipation terms are thus constructed

as a blend of a Laplacian and a biharmonic operator in the conserved flow variables. The

Laplacian term represents a strong formally first-order accurate dissipation which is turned on

only in the vicinity of a shock, and the biharmonic term represents a weaker second-order

accurate dissipation which is employed in regions of smooth flow [11,15]. The spatially



-7-

discretized equations are integrated in time to obtain the steady-state solution using a five-stage

time-stepping scheme, where the convective terms are evaluated at each stage within a time

step, and the dissipative terms (both physical and artificial) are only evaluated at the first, third,

and fifth stages. This particular scheme has been designed to maintain stability in regions

where the flow is dominated by viscous effects, and to rapidly dampen out high-frequency

error components, which is an essential feature for a scheme intended to drive a multigrid algo-

rithm [16,17]. Convergence is accelerated by making use of local time-stepping, implicit resi-

dual averaging [16], and an unstructured multigrid algorithm [1].

The idea of a multigrid strategy is to accelerate the convergence to steady-state of a fine

grid solution through corrections computed on coarser grids. An initial time step is performed

on the fine grid, and the flow variables and residuals are then transferred to the coarse grid. A

correction equation is constructed on the coarse grid by adding a forcing function to the origi-

nal discretized equations. This forcing function is formed by taking the difference between the
transferred residuals and the residu',ds of the transferred variables, thus ensuring that the evolu-

tion of the coarse grid equations is driven by the fine grid residuals. Hence, when the fine grid

residuals vanish, the coarse grid equations are identically satisfied, and generate zero correc-

tions. After transferring values down from the fine grid, a time step is performed on the coarse

grid, and the new values are transferred down to the next coarser grid. When the coarsest grid

is reached, the computed corrections are successively interpolated back up to the finest grid,

and the entire cycle is repeated. In the context of unstructured meshes, a sequence of coarse

and fine meshes is best constructed by generating the individual meshes independently from

one another (as opposed to subdividing a coarse mesh). Thus, in general, the coarse and fine

meshes of a given sequence do not have any common mesh points or nested elements. Thus,

the patterns for transferring the variables, residuals, and corrections back and forth between the

various meshes of the sequence must be determined in a preproeessing operation, where an

efficient tree-search algorithm is employed [1].

Such a multigrid algorithm may be combined with an adaptive meshing strategy in a

natural manner. First, a sequence of globally generated meshes is constructed, and multigrid

time-stepping is performed on this sequence until a satisfactorily converged solution is

obtained. At this point, a new adaptively refined mesh is generated, and the transfer patterns

for transferring variables from the previous mesh to the new mesh are determined. The flow
variables are then transferred to this new mesh, providing a starting solution, and multigrid

time-stepping is resumed on this new sequence which now contains an additional fine mesh.

The process may be repeated, as shown in Figure 4, each time adding a new finer mesh to the

sequence, until a converged solution of the desired accuracy is obtained.

5. INVISCID FLOW RESULTS

When the viscous terms in the Navier-Stokes equations are neglected, the Euler equations

are obtained. Inviscid flow calculations can thus be computed using the method previously

described, but neglecting the terms on the right-hand-side of equations (1) and/or (9), and

replacing the no-slip wall boundary condition with a tangential slip velocity boundary condi-

tion. Inviscid flow computations can be performed for a significantly lower cost than viscous

flow computations, not only due to the reduced number of terms which need to be discretized,

but also due to the elimination of the boundary layer and wake regions, where extremely high

gradients generally occur, and which must be resolved in the viscous case.
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5.1. ExternalFlow Geometry

The firsttestcaseconsistsof thecomputationof the inviscidcompressibleflow about a

high-liRthree-elementairfoilconfiguration.The free-streamMach number is 0.2,and the

incidenceis 8 degrees. At theseconditions,the flow is entirelysubcrirlcal.However, an

extreme double suctionpeak occursat the leadingedge of the main airfoil,where the flow

becomes nearlysonic.The captureof ridsextremelyhighlocalizedgradientrequiresa very fine

mesh resolutionin thisregion.A sequenceof seven meshes were used in the multigridalgo-

rithm.The firstthreemeshes were generatedglobally,and the furtherfourmeshes were gen-

eratedby adaptiverefinement.The criterionforadaptivemesh enrichmentisbased on theundi-

vided differenceof density[18]. The firstdifferenceof densitycomputed along each mesh

edge isexamined. When thisdifferenceislargerthansome fractionof theRMS averageof all

densitydifferencesacrossthe mesh, a new pointisadded midway along the edge. A second

pass isthen performedwhich splitsthe remainingedges of each triangularelementbordering

on a previouslysplitedge,thusensuringan isou'opicrefinement.The finestmesh of thiscal-

culationisdepictedin Figure5.Itcontains11949 nodes,of which 512 are on the airfoilsur-

faces.Extreme refinementis sccn to occur in the main airfoilleadingedge regionand in the

gap regions.A globallyrefinedmesh of thisresolutionwould have required10 to 20 times

more points,and thus would be prohibitivelyexpensive.The coarsestmesh of the sequence

containsmerely II0 poims.The computed Mach contoursintheflow fieldaredepictedinFig-

ure 6, where the high gradientsin the leading-edgeregionare evident.In Figure7, a com-

parisonof the computed surfacepressuredistributionwith thatgeneratedby a finite-element

fullpotentialsolver[19],shows good agreementbetween the two methods, and illustratesthe

magnitude of thesuctionpeak, where thepressurecoefficientrapidlyattainsa valueof-16.0.

The convergencehistoryfor thiscase is depictedin Figure8, where the finegridresiduals

were reduced down to machine zero (indouble precision)in justover 300 multigridcycles.

Each muldgrid cycle requiredroughly 1.8 CPU secondson a singleprocessorof a Cray-2

supercomputer,so thatengineeringcalculations(50 - I00 mg cycles)could be obtainedin 2 to

3 CPU minutes.

5.2. Internal Flow Calculations

In a second test case, the inviscid flow through a turbine blade cascade geometry has

been computed. The particular blade geometry has been the subject of an experimental and

computational investigation at the occasion of a VKI lecture series [20]. A total of seven

meshes were used in the multigrid algorithm, with the last three meshes generated adaptively,

using the undivided density difference criterion. The coarsest mesh of the sequence contains

only 51 points, while the finest mesh, depicted in Figure 9, contains 9362 points. Extensive

mesh refinement can be seen to occur in the neighborhood of shocks, and in other regions of

high gradients. The inlet flow incidence is 30 degrees, and the average inlet Mach number is

0.27. The flow is turned 96 degrees by the blades, and the average exit isentropic Mach

number is 1.3. At these conditions, the flow becomes supersonic as it passes through the cas-

cade, and a complex oblique shock wave pattern is formed. These are evident from the com-

puted Mach contours depicted in Figure 10. All shocks are well resolved, including some of

the weaker reflected shocks, which non-adapted mesh computations often have difficulty

resolving [10]. Details of the flow in the rounded trailing edge region of the blade are shown

in Figure 10, where oblique shock waves are formed on the upper and lower surfaces of the

blade, and where the flow separates (inviscidly), forming a small recirculation region. The
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surface isentropic Mach number distribution for this case is compared with experimental data

provided from [20], in Figure 11. The upper surface experimental values correspond to an exit

isentropic Math number of 1.31, while the lower surface experimental values arc taken from a

case where the measured exit isentropic Math number was 1.21. These values are included

since lower surface data was not available for an exit Mach number of 1.31, and since the

lower surface values were seen to be relatively insensitive to the exit Math number in this

range. Keeping in mind the inviscid nature of the computational results, good agreement is

observed over most of the surface of the blade. The irregularities in the numerical solution are

due to a poor surface definition of the blade, the effect of which is enhanced by the adaptive

meshing procedure, which tends to refine the mesh in the vicinity of non-smooth geometries.

Once the first four globally generated meshes were constructed, the entire flow solution - adap-

tive mesh enrichment cycle was performed three times, executing 25 multigrid cycles at each

stage. This entire operation required 40 CPU seconds on a single processor of a Cray-YMP

supercomputer. The residuals on the finest mesh were reduced by two and a half orders of

magnitude, which should be adequate for engineering calculations. The efficiency of this solu-

tion illustrates the possibility of constructing a truly interactive adaptive mesh Euler solver in

two-dimensions, provided the present algorithm may be efficiently implemented in parallel on

all eight processors of the Cray-YMP.

6. CONSIDERATIONS FOR HIGH REYNOLDS NUMBER VISCOUS FLOWS

While the methodology previously described applies in principle to viscous flows as well,

the efficient solution of high Reynolds number flows requires the generation of highly stretched

meshes as well as the implementation of a turbulence model for use on unstructured meshes.

6.1. Mesh Generation

The generation of highly stretched unstructured meshes requires a suitable mesh point

distribution, with closely packed points in the normal direction, and sparsely distributed points

in the streamwise direction, as well as a method for producing an appropriate triangulation of

such a point distribution. The generation of a suitable point distribution may be effected as pre-

viously described, using local hyperbolically generated structured meshes. However, a

Delaunay triangulation of a given set of points tends to produce the most equiangular triangles

possible, and therefore in general, is not well suited for the generation of highly stretched mesh

elements. Thus, an alternate triangulation procedure must be employed. The approach taken

consists of defining a stretching vector (stretching magnitude and direction) at each node of the

initial point distribution throughout the flow field. Assuming an initial triangulation has been

obtained, when a new mesh point is to be inserted, the associated stretching vector is employed

to construct a locally mapped space such that, within this mapped space, the local point distri-

bution appears isotropic. A Delaunay triangulation is then performed to triangulate the new

point into the mesh in this mapped space, and the resulting triangulation is mapped back into

physical space, thus resulting in the desired stretched triangulation [21]. Hence, a fully

unstructured mesh with highly stretched elements in the boundary layer and wake regions,

nearly equilateral triangles in the inviscid regions of flow, and a smooth variation of elements

throughout the transition regions is obtained. The use of fully unstructured meshes for viscous

flow calculations has been pursued, as opposed to the hybrid structured-unstructured meshes

often advocated in the literature [6,7], due to the increased generality they afford in dealing

with geometries with close tolerances between neighboring bodies, where confluent boundary
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layersmay occur,and due to the ease with which adaptive meshing may be incorporated

throughout the viscous and inviscid regions of flow.

6.2. Turbulence Modeling for Unstructured Meshes

Algebraic turbulence models typically require information concerning the distance of each

mesh point from the nearest wall. Turbulence length scales, which are related to the local

boundary layer or wake thickness, are determined by scanning the appropriate flow values

along specified streamwise stations. For example, the Baldwin-Lomax turbulence model [22]

uses the location of the maximum of the moment of vonicity along streamwise stations normal

to the boundary layer to estimate the local turbulence length scales. In the context of unstruc-

tured meshes, mesh points and thus flow variables do not naturally occur at regular streamwise

locations. Thus, lines normal to the walls and viscous layers must be created and flow variables

interpolated onto these lines, in order that the turbulence length scales may be determined. This

type of approach has previously been implemented for supersonic ramp geometries by Rostand

[23]. However, in the present work, more complex geometries must be accommodated. Recal-

ling that, in the mesh generation procedure, the initial mesh point distribution was obtained by

generating a series of local structured meshes about each geometry component, a natural

manner of creating streamwise turbulence modeling stations is to make use of these local struc-

tured meshes as background meshes for the turbulence modeling routine. Thus, at each time

step in the solution procedure, the current flow variables from the global unstructured mesh are

interpolated onto each of the local structured meshes. The Baldwin-Lomax turbulence model is

executed on these local structured meshes, and the resulting eddy viscosity distribution is inter-

polated back onto the unstructured mesh. In regions where two or more local structured meshes

overlap, the multiple eddy viscosity values (one from each local mesh) which are interpolated

back to the unstructured mesh are each weighted by their relative distance from the respective

wall. Structured mesh lines emanating from one geometry component are terminated if they

intersect a neighboring component, as shown in Figure 12, such that in any region of the flow

field, the eddy viscosity is only related to the viscous layers and associated walls which are

directly visible from that point. The same interpolation routines employed for the multigrid

algorithm are used to pass variables back and forth between the global unstructured mesh and

the local structured turbulence meshes. The determination of these transfer patterns is done in

an efficient preprocessing operation, and the transfer addresses and coefficients are stored for

subsequent use in the turbulence modeling routine. The whole process is very efticient, and in

general, the entire turbulence modeling routine, including the interpolation procedures requires

only 15% of the total time within a muhigrid cycle. Memory requirements are however

increased by about 50%, since extra variables and transfer coefficients must be stored for the
local structured meshes.

7. TURBULENT FLOW RESULTS

The above modifications have been incorporated into the present scheme in order to com-

pute the turbulent flow in the transonic regime past a two-element airfoil. The configuration

consists of a main airfoil with a leading edge slat, which has been the subject of extensive

wind tunnel tests [24], as part of a program aimed at improving the maneuvering capabilities of

fighter aircraft in the transonic regime. A multigrid sequence of five meshes was employed to

compute the flow about this configuration. The finest mesh is depicted in Figure 13. It con-

tains 22,509 points, of which 256 lie on the surface of the main airfoil, and 128 on the surface
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of theslat.Theaveragewidthof theelementson theairfoil surfacesis 0.00001chords,result-
ing in cell aspectratiosof theorderof 1000:1in theseregions.Theturbulencebackground
meshes,consistingof onelocal structuredmeshfor eachairfoil component,aredepictedin
Figure12.ThecomputedMachcontoursareshownin Figure14.Forthiscase,thefreestream
Machnumberis 0.5,theReynoldsnumberbasedon thechordis 4.5million,andtheincidence
is 2.8 degrees.At theseconditions,the flow is supercritical,anda shockis formedon the
uppersurfaceof the slat,ascanbe seenfrom thefigure.Thecomputedshockis somewhat
diffuse,andan increasedmeshresolutionin this regionwouldbe requiredto obtaina crisper
shockdefinition.However,thesuddenthickeningof theboundarylayerasit interactswith the
shockis evidentfrom the computedMach contours.A small recirculationregion is also
observedon thelowersurfaceof theslat. A comparisonof thecomputedsurfacepressuredis-
tributionwith theexperimentalwindtunneldatais givenin Figure15.Computedandexperi-
mentalvaluesareseento agreefavorablyin all regions,demonstratingagoodpredictionof the
suctionpeaks,andlocationof theslatuppersurfaceshock.Thissolutionrequiredroughlyeight
cpuminuteson a singleprocessorof a Cray-2supercomputer,whichcorrespondsto 75mul-
tigrid cycleson thefinestgrid,duringwhichtheresidualswerereducedby approximatelythree
ordersof magnitude.To theauthor'sknowledge,thisrepresentsthefirst compressibleturbulent
flowcalculationfor multi-elementairfoilgeometriesusingunstructuredmeshes.

8. CONCLUSION

A methodfor solving viscousand inviscid flows about arbitrary two-dimensional
configurationshasbeenpresented.An attempthasbeenmadeto keepthemethodasgeneralas
possible.Thesimultaneoususeof multigridandadaptivemeshingresultsin a rapidlyconver-
gentandaccuratesolution.Foragivennumberof unknowns(meshpoints),unstructuredmesh
solutionscanbe obtainedwith roughlythe samenumberof operationsas is requiredby the
mostefficientcurrentstructuredmeshsolvers.However,thespeedof executionof unstruc-
turedmeshcodeson present-dayvectorcomputersis roughlythreetimesslowerthan that
observedwith structuredmeshcodes,dueto theindirectaddressingandscatter-gatheropera-
tionsrequiredby theuseof randomdata-sets.However,this factorcaneasilybeoutweighed
throughthe useof a moreefficientplacementof grid points,usingadaptivemeshingtech-
niques.For inviscidcomputations,thepresentalgorithmappearsrobustandefficientenough
thatit maybe implementedin an interactivemodeon thelatestgenerationof supercomputers.
An inviscidsolverbasedon thesetechniquesin threedimensions,which is in the planning
stages,shouldalsoprovidea competitivesolutiontechniquefor largeproblems.For turbulent
viscousflow calculations,substantialmodificationstothemeshgenerationphasewererequired.
Theimplementationof analgebraicturbulencemodelhasdemonstratedagoodpredictioncapa-
bility for flow overstreamlinedbodies.In futurework,the implementationof a moregeneral
turbulence model, such as a field equation model, will be considered for flow over arbitrary

geometries with massive separation.
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Figure 1
Definition of the Various Boundary Regions for the Periodic

Turbine Blade Cascade Geometry
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Figure 2

Illustration of an Adaptively Inserted Boundary Point in the

Region of a Concave Boundary and Resulting Sliver Cross-Over Triangle



-16-

q

, ":'.- O p(x,y)
, ":"

• °*

., o°
o.

°
°

". °o,

• ; **
o' . o , ,

°° o

o"

o, •

°.,

•,° *,

°, °°

•, ,o

•° *

oO **
**

A B

Figure 3

Domain of Influence of Finite-Element Basis Function and Equivalent
Finite-Volume Control Volume
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Figure 4

Full Multigrid Algorithm Employed in Conjunction with Adaptive Meshing Strategy
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Figure 5

Adapted Mesh Employed for Computing Inviscid Subcritical Flow over a
Three-Element Airfoil Configuration; Number of Nodes -- 11949
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Figure 6

Computed Mach Contours for lnviscid Subcritical Flow over a Three Element Airfoil Configuration
Mach -- 0.2, Incidence = 8 degrees
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Figure 7

Comparison of the Computed Surface Pressure Distribution for the Present Euler

Soludon with that of a Full Potential Solution from [19]; Mach = 0.2, Incidence = 8 degrees
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Convergence Rate on Finest Mesh for the Three-Element Airfoil Case
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Figure 9
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Figure 10

Computed Mach Contours for Flow Through a Periodic Turbine Blade
Cascade Geometry
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Figure II

Comparison of Computed Surface Isentropic Mach Number Distribution

with Experimental Values for Flow Through a

Periodic Turbine Blade Cascade Geometry
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Figure 12

Illustration of Local Structured Background Turbulence Modeling Meshes Employed

for Computing Turbulent Flow over a Two-Element Airfoil Configuration
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Figure 13

Fully Unstructured Mesh Employed for Computing $upercritical Turbulent

Viscous Flow over a Two-Element Airfoil Configuration; Number of Nodes = 22,509
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Figure 14

Computed Mach Contours of Supercritical Turbulent Viscous Flow over a Two-Element Airfoil Configuration
Mach Number -- 0.5, Reynolds Number = 4.5 million, Incidence = 2.8 degrees
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Figure 15

Comparison of Computed Surface Pressure Dis_butJon with Experimental

Wind-Tunnel Data for Flow Over Two-Element Airfoil Configuration

Mach Number = 0.5, Reynolds Number = 4.5 million, Incidence = 2.8 degrees
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